Ученые не могут определить, станет ли π целым числом при многократном возведении в степень.
Число π (пи) - одно из самых известных и загадочных в математике. Его изучали тысячи лет, и оно продолжает привлекать внимание как ученых, так и любителей. Хотя π описывает окружность - одну из самых простых и симметричных геометрических фигур, его десятичное представление не имеет ни конца, ни повторений. Недавно возникла новая интересная загадка: что произойдет, если повторно возводить π в степень само себя? Может ли результатом быть целое число?
3 мая 2013 года главный математик компании Epic Games Дан Пипони вызвал оживленное обсуждение своим постом в Twitter (сейчас X). Он предложил пользователям доказать, что π в степени π в степени π в степени π не является целым числом. Хотя этот пост собрал несколько комментариев, значительного внимания он не привлек.
Компьютерный ученый Даниэль Спивак быстро понял важность этого вопроса . «Вы по сути просите своих подписчиков решить одну из значительных нерешенных задач, связанных с тетрацией?» - заметил он. Тетрация - это многократное возведение числа в степень. Даже математики не знают, каким будет результат, если возвести π в степень само себя четыре раза подряд.
В 2021 году вопрос вновь стал популярным благодаря математику Томасу Блуму из Оксфордского университета. Его пост в Twitter вызвал оживленное обсуждение, собрав более 500 лайков и 90 репостов. Лауреат Филдсовской премии Тимоти Гауэрс также присоединился к обсуждению : «Почему бы нам просто не посчитать это до нескольких десятичных знаков?» Однако, как оказалось, даже для вычисления первых десятичных знаков результата потребуются невероятные вычислительные ресурсы.
Для понимания проблемы важно знать, что многократное возведение в степень выполняется справа налево. Например, π в степени π приблизительно равно 36.46. Далее π в степени 36.46 дает число с 18 цифрами: 1.34 x 10¹⁸. Это только результат трехкратного возведения в степень. Четырехкратное возведение приводит к числу с почти 10¹⁸ цифрами. Для сравнения, в 2022 году было вычислено 62 x 10¹² десятичных знаков π. Для вычисления результата π в степени π в степени π в степени π потребуется определить в миллион раз больше цифр.
Рассмотрим упрощенный пример: возведение 4 в степень 4 в степень 4, если интересуют только последние две цифры. 4 в степени 4 в степени 4 равно 4²⁵⁶. Для вычисления последних двух цифр можно использовать сокращение: вместо умножения всех трехзначных чисел достаточно работать только с последними двумя цифрами.
Австралийский математик Мэтт Паркер продемонстрировал на YouTube сложность подобных вычислений. Он отметил, что если обрезать π до пяти десятичных знаков и возвести это число в шестую степень, только первые две десятичные цифры результата будут точными. Паркер предположил, что для получения хотя бы одной правильной цифры после запятой в результате возведения π в степень π в степень π потребуется учесть по крайней мере в два раза больше десятичных знаков. «Кратко говоря, в обозримом будущем мы не сможем это вычислить», - заключил Паркер.
К счастью, математика предлагает другие способы определения, является ли число целым, иррациональным или трансцендентным. Трансцендентные числа не могут быть выражены как решение простого уравнения. Например, √2 не является трансцендентным, так как является решением x² = 2. Однако π - трансцендентное число. Американский математик Стивен Хоэль Шанюэль в 1960-х годах предложил гипотезу, которая позволяет оценить, является ли значение трансцендентным. Эта гипотеза достаточно абстрактна и требует сложных математических знаний.
Некоторые эксперты использовали гипотезу Шанюэля для исследования π в степени π в степени π в степени π. Согласно их выводам, результат должен быть трансцендентным, а значит, не может быть целым числом. Однако гипотеза Шанюэля до сих пор не доказана, поэтому окончательное заключение остается открытым.
Итак, существует два пути для решения загадки четырехкратного возведения π в степень. «Мы либо должны значительно продвинуться в математике и доказать гипотезу Шанюэля, либо улучшить вычислительные технологии,» - сказал Мэтт Паркер в своем видео на YouTube. До тех пор остаётся неизвестным, является ли π в степени π в степени π в степени π целым числом или нет.
Математическое сообщество продолжает работать над решением этой задачи, и возможно, в будущем появятся новые открытия, которые позволят разгадать эту увлекательную тайну числа π.
Никаких овечек — только отборные научные факты